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1. INTRODUCTION

Cointegration is an enormously important concept in empirical macroeconomics and finance.
The idea that there are stable relationships among persistent variables is appealing both the-
oretically and empirically. The canonical definition of cointegration is that there exists a
stationary linear combination of variables that have unit roots. Researchers typically esti-
mate cointegrating regressions by an estimator such as pseudo-Gaussian maximum likelihood
in a vector error-correction model (Johansen 1988) or dynamic OLS (Stock and Watson 1993
and others). Assuming that the regressors have exact unit roots, these estimators are as-
ymptotically efficient and asymptotically equivalent and the associated t and F statistics for
hypothesis tests on the cointegrating vector have their usual normal and y? null limiting
distributions.

But there is an important lack of robustness in these approaches to inference which
was first noted by Elliott (1998) and subsequently by Stock and Watson (1996) and Wright
(1999). The problem is that if the regressors in the putative cointegrating regression have
roots that are slightly below one, tests based on comparing the t and F statistics based
on conventional estimators with normal or x? critical values can have size far above the
nominal level. Of course, the definition of cointegration requires all the variables to have
unit roots and accordingly it is conventional to apply a unit root test to each variable
before proceeding to a cointegration analysis. But these unit root tests have poor power in

small samples and are not consistent against the alternative that the variable in question



has a root that is in a 1/7" neighborhood of unity, where T is the sample size. The size
distortions in the conventional approaches to cointegration analysis are serious even when
the variables have roots which are so close to the unit circle that the unit root tests have
little power. Elliott derived the nonstandard asymptotic distributions of the conventional
t and F statistics for hypothesis tests on the cointegrating vector, when the regressors in
the putatively cointegrating regression are in a 1/7 neighborhood of unity. He showed that
severe asymptotic size distortions will result from using the conventional critical values.
Allowing the largest autoregressive root of the regressors to depend on the sample size is
simply a statistical device which has been found to provide a good approximation to the
sampling distribution of estimators and test statistics in small samples with roots close to
the unit circle (see e.g. Stock (1995) and the references therein). It also makes concrete
the lack of robustness with which this paper is concerned; namely a lack of robustness of
conventional cointegration methods to violations of the unit root hypothesis which a pretest
will have difficulty in detecting.

The lack of robustness noted by Elliott (1998) is an important practical problem be-
cause of the enormity of the potential size distortions and because researchers rarely have
reason to be confident that variables have exact unit roots. Indeed, for many economic vari-
ables such as interest rates, there are strong theoretical reasons to believe that their evident
persistence should be characterized by a root slightly below unity.

This paper proposes an approach to inference in a cointegrating system which is ro-



bust to the regressors having roots slightly below one. The idea involves instrumenting the
regressors in the cointegrating regression by deterministic polynomial time trends, or by ar-
tificially generated random walks. Although independent of the regressors by construction,
these instruments will be highly correlated with the regressors; this is of course a spurious
correlation. I show that in the just identified case, the F statistic for hypothesis tests on the
entire cointegrating vector associated with this instrumental variables (IV) estimator has a
x? null limiting distribution. This is true regardless of the endogeneity of the cointegrating
regressors and regardless of whether the regressors have exact unit roots, or roots local to
unity. Confidence sets for the vector of cointegrating coefficients may hence be formed, by
appeal to the duality between hypothesis tests and confidence sets, and these confidence
sets will not suffer from the lack of robustness noted by Elliott (1998). This approach to
inference in a cointegrating system is computationally and conceptually considerably simpler
than other available robust alternatives and can in addition be more powerful.

The idea of estimating cointegrating coefficients using deterministic polynomial time
trends or artificially generated random walks as instruments was first proposed by Phillips
and Hansen (1990), who showed that this estimator was consistent but did not eliminate
endogeneity bias.  This estimator is not however widely used. The contribution of this
paper is to show that the F statistic for hypothesis tests on the entire cointegrating vector
associated with this estimator has a standard null limiting distribution that is free of nuisance

parameters even when the regressors have roots local to unity, rather than exact unit roots,



and so offers a solution to the problem noted by Elliott (1998). This paper is also related
to the work of Park (1990), who proposed testing a null of cointegration by testing for
correlation between the residuals of the putative cointegrating regression and polynomial
time trends. However, this paper is not concerned with testing for cointegration, but rather
with inference on the cointegrating coefficients, when the regressors may not have exact unit
roots.

The plan of the remainder of this paper is as follows. In section 2 the model and
the proposed test are described and the consistency of the test against fixed alternatives is
shown. In section 3 its local asymptotic power is compared to that of other tests. Section 4
contains a finite sample Monte-Carlo simulation. An empirical application of the proposed

methodology is reported in section 5. Section 6 concludes.

2. THE MODEL AND PROPOSED METHOD

Consider the model

Yo = i, + B'rp + uy

Ty = fiy + Vg, V= Avp oy +uy, A=1,+T7'C,

where (3 is a px1 parameter vector and C' is a fixed pxp matrix. It is assumed that u; =

’ ! . . .
(u1g, uy) = D(L)ey, where e, = (€14, €4,)" is a zero-mean i.i.d. random vector, each element of



which has 4 finite moments and D(L) is a 1-summable lag-polynomial. Under these assump-
tions, the functional central limit theorem (T—Y2%\" Ny, T-1250l ) = (UL (r), Us(r)')
is satisfied, where U;(r) is a scalar Brownian motion and Uy(r) is a p-vector Brownian
motion.

If ; were exactly I(1) (C' = 0), then this would be the standard model of cointegration
in triangular form. As explained in the introduction, I do not wish to impose the exact unit
roots assumption and so allow for C' to be nonzero. However, x; is sufficiently persistent that
unit root tests will have difficulty in rejecting the exact unit root hypothesis; more precisely,
these tests will be inconsistent because A is in a T~! neighborhood of the identity matrix.

The standard methods for analyzing cointegrating systems assume that C' = 0. Many
asymptotically efficient estimates for 3 have been proposed in this case. Dynamic OLS (Stock
and Watson 1993 and others) is one such estimator. Let B be the dynamic OLS estimate of 3,
i.e. the estimated coefficient on z; in an OLS regression of y; on d;, x;, Ax; and o(Tl/ 3) leads
and lags thereof. If C' = 0, 3 is superconsistent for § and the associated t and F statistics
have their usual normal and y? null limiting distributions. But if C' # 0, while B is still
superconsistent, the t and F statistics do not have these usual limiting distributions (Elliott
(1998) and Stock and Watson (1996)). Their limiting distributions instead depend upon C,
a nuisance parameter which is not consistently estimable. If the usual normal and y? critical
values are used, the t and F tests suffer from serious size distortions. The corresponding

confidence sets for the parameter 3 have coverage that is far below the nominal level.



2.1 The Proposed Method

In this paper, I propose an approach to inference in this model which does not require
the variables to have exact unit roots. The idea is to estimate 3 by the just identified
instrumental variables estimator, using a p-vector of instruments, z;, for which I consider

two specifications:

t 12 tP

T T2 "‘ﬁ)lv so that R[Tr] — C(’I‘) = (’I‘, Tzv "'rp)lv as T' — oo.

Instruments I1: z, = (

Instruments 12: z; is a p-vector random walk with standard normal increments, independent
of all the other time series in the system, so that T~ '/?zp,) = Z(r), as T — oo where Z(r)

is a standard Brownian motion (independent of (Uy(r), Us(r)")').

Other deterministic functions of time could be used as instruments (e.g. broken trends),
but I limit attention to these two sets of instruments in this paper. Although independent
of x; by construction, these instruments will be highly correlated with x;; this is of course
a spurious correlation. The idea of exploiting this spurious correlation to generate valid
instruments was first proposed by Phillips and Hansen (1990) in a model with exact unit
roots (C' = 0). In this paper, I show that the F statistic for hypothesis tests on the entire
cointegrating vector associated with this just identified estimator has a standard null limiting
distribution that is free of nuisance parameters even when C # 0, and so offers a solution to
the problem noted by Elliott (1998). In the numerical and empirical work in sections 3 and

4, the focus will be on instruments 11, as this appears to give better results.



Let B denote the IV estimator of 3, instrumenting x; by z, i.e.
B = [Zrirzﬁfxf/]_lzrir:ﬂfy#

where 2}', z}' and y}' are the deviations of z, z; and y; from their respective sample means.

With instruments 11,

(5 8) = ([ ¢)EEE)aT [ ¢ ) (2.1)

while with instruments 12,

T(5 - 9) = ([ 2 BEe)an™ [ 26 2.2

where C*(r) = C(r) — Ji C(s)ds, Z8(r) = Z(r) — i Z(s)ds, HA(r) = He(r) — J3 Ho(s)ds
and Hc¢(r) is the Ornstein-Uhlenbeck process defined by the stochastic differential equation
dHo(r) = CHg(r)dr + dUs(r).  Accordingly, B3 is a superconsistent estimator of 3, but
because the asymptotic distributions in equations 2.1 and 2.2 do not generally have mean
zero, 3 has O(T1!) asymptotic bias as an estimator of the cointegrating vector (for C' = 0,
this was shown by Phillips and Hansen (1990)). This is also true of the dynamic OLS
estimator B and some numerical simulations indicate that the biases of 3 and 8 are of
similar magnitudes. Point estimation is accordingly not the motivation for this IV estimator.
I do not know of any estimator in this model which is asymptotically unbiased to O(T ™),

uniformly in C.



The F statistic testing the hypothesis that 3 = 3, associated with B is

Flv(ﬁo) = (B - ﬁo)lV(B - 50)
where V = 61_2[(Zlez‘fﬁ,)_lzlezfzfl(ZtT:ﬂ?Z#I)_l]_lv

5 =3__, (1—Z5(3)),

j=—1 I+1

¥(j) is the sample autocovariance function of @y, = yi' — B,xé‘, and [ = o(T"?). If I = 0,
4% is simply the sample variance of iy;, but more generally it is the estimator of the scaled
zero-frequency spectral density proposed by Newey and West (1987), required because uy; is
serially dependent.

The null limiting distribution of Fjy (f3,) is given in Theorem 1. The proofs of the

Theorems are collected in the appendix.

Theorem 1: Under the null hypothesis 8 = 3,, as T — oo, Fry(8,) converges to a x>

distribution on p degrees of freedom (with either instruments I1 or instruments 12).

Under the fixed alternative 5 = 3, # 3, Fiv diverges to infinity and so the test rejects with
probability one, asymptotically.

It is important to note that Theorem 1 would not apply if there were more than p
polynomial trends or artificially generated random walks being used as instruments. Instead,
the F statistic would have a nonstandard null limiting distribution which would depend on
nuisance parameters which are not consistently estimable. This is the reason why I focus

8



exclusively on the just identified case in this paper. Also, even in the just identified case,
the null asymptotic distribution of an F or t statistic testing a hypothesis about one or
more elements of 3, but not the whole vector, is nonstandard (and, again, dependent on
nuisance parameters which are not consistently estimable). Only the F statistic testing the
hypothesis that the entire parameter vector 3 takes on a specified value has a x? null limiting

distribution, uniformly in C.

2.2 Confidence Sets for

A researcher can form a confidence set for § with nominal coverage 1-a as B(«a) = {0, :
Frv(By) < x3(1 — @)}, where xZ(1 — a) is the upper 1-o percentile of the x* distribution
on p degrees of freedom. By construction, this confidence set is nonempty and convex!.
It may be desired to construct a confidence set for one or more elements of (3, but not
for the whole vector. If 3 is partitioned as § = (ﬂ'A, ﬁjg)’ , then a confidence set for 3, is
also available that has coverage of at least 1-«, asymptotically. This is simply given by
{B4:(B4,B3) € B(a) for some B5}. Unlike the confidence set for the whole vector (3, this
confidence set is asymptotically conservative. It is easy to form a confidence interval for a

scalar 3, in this way, without explicitly constructing the confidence set B(«). Partition V'

Tt is a maintained assumption throughout this paper that u;is stationary. If this were not so, then
there would be a spurious correlation between z; and w1+, violating the instrument orthogonality requirement.
The relationship between y; and x; would a spurious regression and the confidence set for 3 associated with
the IV estimator would be nonempty, but would exclude the true parameter value w.p.1, asymptotically.
An important advantage of the approach to robust inference in cointegrating systems proposed by Wright
(1999), relative to that in the present paper, is that it does not maintain the stationarity of uy:, but rather
involves jointly testing the hypothesis of cointegration and the hypothesis that 8 = 3,.



. Vaa Vas .
and [ conformably with [ as and (5 ,4,0g), respectively. Since B(a) can

Vis Ves

be written in the quadratic form

B(e) = {(Ba: ) : (Ba—Ba)*Vaa+2(Bs— Ba)Vas(Bs — Bp)

+(Bp — Bp)'Vee(Bg — Bp) < Xfy(l —a)},

the asymptotically conservative confidence interval for the scalar 3, is simply

(B, + infy, ~2VarBo=bp)=y/ VA —ﬁB>]22—Vi1£AA[<ﬁB ~55) Vi (B —Bp) G (-]

BA 4 SupﬂB —2VaB (53 *ﬂB)JF\/[QVAB (53 *ﬂB)]Zé‘;AA[(ﬁB*ﬂB)'VBB (ﬁB*ﬂB)*X;%(l*a)} )7

which can be calculated by straightforward numerical optimization over the p-1 nuisance
parameters in Gz. Other techniques are available for testing a hypothesis concerning the
entire vector (3, as discussed in Wright (1999) and, more briefly, below. In principle, a
confidence set for  may be formed by inverting the acceptance region of any one of these
tests. These confidence sets may be empty or nonconvex (unlike the confidence set for g3
proposed in this paper). An asymptotically conservative confidence set for any single element
of # may be deduced by projecting out the other parameters. But (especially for large p),
this is in practice a highly cumbersome approach involving calculating the underlying test
statistic at each point in a p-dimensional grid. Because the method proposed in this paper
involves constructing the confidence set for the entire vector 3 as the standard confidence
ellipse associated with the IV estimator, the calculation of an asymptotically conservative

10



confidence set for a single element of 3 is greatly simplified. This is a significant practical
advantage of the procedure proposed in this paper relative to other available approaches to
inference in cointegrating systems which are robust to violations of the assumption of exact

unit roots.

2.3 Extensions to models with trends

The only deterministic terms in the model as specified in this section are the constants .,
and p,. This is without loss of generality. If y, were replaced by a linear time trend (a
specification sometimes referred to as stochastic cointegration), then the linear time trend in

instruments I1 would have to be replaced by another deterministic function of time, such as

tp+1

7pr1- Additionally, the demeaned stochastic processes in equations 2.1 and 2.2 would also

have to be detrended. But the result in Theorem 1 would be unaffected.

3. ALTERNATIVE METHODS AND LOCAL ASYMPTOTIC
POWER

In this section, I consider the local asymptotic power of the proposed test, which I refer
to henceforth as IV, and a number of alternatives. In this section, I consider the model
with p=1, so that z; is a scalar time series with an autoregressive root a = 1 + Z. The
autoregressive root a and local to unity parameter ¢ are written in lower case to emphasize

the fact that they are scalars. So the model specifies that

11



Yo = py + By + ugy

Ty = fly TV, V= Vg + Uy, a =1+ %,

Let ¥ = = D(1)E(gs;)D(1)" denote 2r times the spectral density of u; =
2
012 O3

(urg,uge). Let Uy(r) = o1Vi(r) and Us(r) = a9Va(r), where Vi(r) and Va(r) are standard
Brownian motions with correlation A = =2 (a measure of the long-run endogeneity of
the cointegrating regression). Also let J.(r) denote the scalar Ornstein-Uhlenbeck process
defined by the stochastic differential equation dJ.(r) = cJ.(r)dr + dV2(r) and note that

T Qx[TT] = 09J.(r). Theorem 2 gives the asymptotic distribution of the test statistic

Frv(B,) under the sequence of local alternatives 8 = 3, + b/T.

Theorem 2: Using instruments I1, under the sequence of local alternatives 5 = (3, + b/T, as

T — o0,

Frv(Bo) = [%22 fy ¢*(r)JE(r)dr + Jo ¢H(r)dVa(r)]2/ fo ¢*(r)2dr

where J¥(r) = J.(r)— [y Je(s)ds. The same result holds with instruments 12, replacing ¢*(r)

by ZH*(r).

Wright (1999) lists a number of alternative procedures for testing a hypothesis con-
cerning 3 and provides expressions for their local asymptotic power. All of these tests have
nontrivial local asymptotic power against alternatives in a 1/7 neighborhood of the hypoth-
esized value of 3, so no test has an asymptotic efficiency of zero relative to any other test.

12



One of these tests is dynamic OLS, which involves a t test of the coefficient on z; in a
regression of y; on a constant, z; and Az; and o(T"/?) leads and lags thereof: I henceforth
refer to this as the DOLS test. This does not control asymptotic size, as was first shown
by Elliott (1998). Another procedure, proposed in Wright (1999), tests the hypothesis that
B = B, by testing the implication that y, — Bz, is stationary, using the test of Kwiatkowski
et al. (1992). This test, like IV, has asymptotic size equal to the nominal level, uniformly
in c¢. I henceforth refer to this as the KPSS test.

Two other more complicated procedures, described in Wright (1999), are both asymp-
totically conservative and have similar size and power properties. One is the size-adjusted
parametric bootstrap of Stock and Watson (1996). The other involves first constructing
S., a confidence interval for ¢, by the method proposed in Stock (1991). Imposing any value
of ¢ in S., a hypothesis concerning 3 can then be tested: if any of these tests leads to a
rejection, then the null hypothesis is rejected. An upper bound for the asymptotic size of
this procedure can be obtained by appeal to the Bonferroni inequality. This procedure was
proposed by Cavanagh, Elliott and Stock (1995) in a closely related context. I henceforth
refer to this as the BONF test. Generalizations of these two procedures to the case of 2
cointegrating regressors are cumbersome, while they are utterly impractical with more than
2 cointegrating regressors (see Stock and Watson (1996)).

A confidence set for 3 can be constructed using the size-adjusted parametric bootstrap,

BONF, or KPSS tests, by calculating the test statistic at each point in a grid of hypothesized
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values and inverting the acceptance region of the test. This first principles construction of
a confidence set is circumvented by using the instrumental variables approach proposed in
this paper.

The local asymptotic power functions of the IV, DOLS, KPSS and BONF procedures?
are plotted in Figure 1 for 02 = 03 = 1, and various values of ¢ and A\. The IV procedure
uses the instruments I1 (results using the instruments 12 are not shown, but give somewhat
lower power and are available from the author on request). The nominal size of the test is
5% in all cases®. For nonzero ), the DOLS test has asymptotic size well above 5%, if ¢ # 0.
These massive size distortions mean that the DOLS test cannot be used for reliable inference
in the presence of large roots that are not necessarily exact unit roots. The other tests have
asymptotic size at or below the nominal level. None of these tests is dominant in terms of
local asymptotic power, though the BONF test generally has higher power than the KPSS
test, which in turn generally has higher power than IV. The local asymptotic power of all

of these procedures falls as ¢ becomes more negative.

2The local asymptotic power functions for the size-adjusted parametric bootstrap procedure of Stock and
Watson (1996) are not shown, but are available in Wright (1999).

3 Continuous stochastic processes were replaced by discrete approximations of length 500 and 5,000
replications were conducted in each simulation.

14



4. FINITE SAMPLE RESULTS

While the local asymptotic power of tests is of interest, the finite sample properties of the
alternative methods of inference, and especially the finite sample coverage and width of
confidence intervals are ultimately of most interest to applied researchers. Accordingly, I
also simulated the effective coverage and median width of the alternative confidence intervals

for 4 in the model

Yo = py + By + uy
Tt = [y + Uy, Uy = QU1 + Ugt

Uty = QUit—1 + 0141 + €14, Ut = €21

where z; is a scalar, py = pp =0, (€1¢, €9¢)" is an i.i.d. normal random vector with mean

(159)° LA
zero and covariance matrix - - , so that ¥ = and t=1,2,...T. The
g Al

true value of (3 is zero. The errors in the cointegrating relationship are allowed to have
serial correlation parameterized by ¢ and 6 such that |¢| < 1 and |#] < 1. If a = 1, then
this is a standard model of cointegration, in which the variables have unit roots, but a may
be slightly less than 1. For ¢ close to 1, there is slow mean-reversion to the cointegrating
equilibrium.

The effective coverage and median width of the confidence intervals based on the IV,
DOLS, KPSS and BONF tests are plotted against A in Figures 2 and 3, respectively, for
a number of values of ¢, a and 6 and a sample size T=100. The IV procedure uses the

15



instruments I1. Results using the instruments 12 instead (and for some other parameter
configurations) are not shown, but are available from the author on request*. All confidence
intervals have 95% nominal coverage. For DOLS and IV, the confidence intervals are simply
given by the point estimate +/- 1.96 standard errors. For KPSS and BONF, the confidence
intervals involve explicitly inverting the acceptance region of the test, over a grid of hypoth-
esized values. The size of the underlying tests can of course be read off from these pictures:
the size of the test is one minus the coverage of the confidence interval®.

The DOLS method has coverage far below the nominal level for a # 1 and A # 0.
All the other tests control coverage well, except when ¢ is close to 1. The IV and BONF
methods yield confidence intervals with similar coverage; both give generally higher coverage
than KPSS. The DOLS method gives the confidence intervals with the shortest median
width, but this is of little use in the light of the associated low coverage. For a = 1, the
KPSS and IV methods have very similar median width, both are slightly shorter than the
BONF confidence intervals. As a falls, these three confidence intervals all get wider, but
this is tendency is most pronounced for the KPSS method and is least pronounced for the
BONF method. Overall, there is little difference between BONF and IV in terms of median
width. This is also true for KPSS if a is close to 1; otherwise KPSS gives somewhat wider

confidence intervals.

41f the instruments 12 are used instead, the IV confidence intervals have slightly higher effective coverage
and slightly higher median width.

® In these simulations, the number of leads and lags in the DOLS test, was set to 3 while all Bartlett
kernel estimates used 2 autocovariances. 1,000 replications were conducted in each simulation.
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In summary, the IV method can give inference that is more accurate than KPSS or
BONF, while, in these simulations, it never gives much less accurate inference. Meanwhile
IV is the simplest of these three methods, both conceptually and in terms of its practical
implementation. Indeed, IV and KPSS are the only computationally feasible robust ap-
proaches to inference in the general model of section 2 when there are many regressors in

the cointegrating system.

5. MONEY DEMAND: AN EMPIRICAL APPLICATION

A canonical application of cointegration analysis is to the estimation of long-run money
demand. If there is a unit root in real output (in logs) and in the interest rate and if
there is a stable demand for real money balances (in logs), then the log real money stock,
log real output and the interest rate should be cointegrated. The cointegrating coefficients
represent the output elasticity and interest semielasticity of long-run money demand. This
cointegrating system has been estimated by Hoffman and Rasche (1991), Stock and Watson
(1993) and many other authors.

But there is no consensus that income does have an exact unit root and a unit root
specification represents an unreasonable population model for the interest rate. Income
and interest rates are clearly very persistent, but it seems undesirable to assume that they
have exact unit roots and to use methods of inference which are extremely non-robust to a
violation of this assumption. Accordingly, I applied the methodology proposed in this paper

17



to form confidence sets for 3,, the output elasticity and (3,, the interest semielasticity in
a regression of the log real money stock on log real output and the interest rate. I used
a time series of annual data on the money stock, output, prices and interest rates® for the
years 1900-1998 and also estimated these parameters by dynamic OLS (imposing exact unit
roots in the regressors). Figure 4 shows the confidence ellipse for (3,, 3,)" using the method
proposed in this paper, using instruments I17. The DOLS confidence ellipse for this vector
is also shown.

Stock and Watson (1996) and Wright (1999) used the inverse of the acceptance region
of the size-adjusted bootstrap and KPSS tests to form confidence sets for (3,,03,)" with
annual money demand data. Both those papers obtained confidence sets which were larger
than the DOLS confidence ellipses, but not so large as to be uninformative. This is similar
to the results which I find, forming the confidence sets as proposed in this paper. The IV
confidence ellipse is a little larger than the DOLS confidence ellipse, which does not control
coverage in the presence of large but non-unit roots, but is certainly not so large as to be

uninformative. Only negative values of the interest semielasticity are included within the

®The money stock from 1959-1998 is M1, from DATASTREAM (mnemonic USM1). Money stock data
from 1900-1914 and 1915-1958 are from Historical Statistics (series X267) and Friedman and Schwartz (1970,
Table 1), respectively. Real output is measured as the Real Net National Product, from NIPA for 1929-1998,
spliced with earlier data obtained from Friedman and Schwartz (1982, Table 4.8). The price series is the net
national product deflator, obtained from the same sources as real output. The interest rate is the 6 month
commercial paper rate. From 1968-1998, this was obtained from DATASTREAM (mnemonic USCRBYLD);
data from 1900-1967 are from Friedman and Schwartz (1982, Table 4.8).

"If the artificial random walk instruments (instruments 12) are used instead, the confidence ellipse depends
on the seed for the random number generator, but is typically larger than the confidence ellipse using
instruments I1. The dependence of the confidence ellipse on the seed is, of course, a practical disadvantage
of instruments 12.
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confidence sets. Only values of the income elasticity that are over 0.8 are included in the
confidence sets, whereas some authors (such as Baba, Hendry and Starr (1992)) have argued

that the income elasticity of money demand is around 0.5.

6. CONCLUSION

Standard methods for inference in cointegrating systems require all the variables to have
exact unit roots and have been shown by Elliott (1998) to be not at all robust even to slight
violations of this condition. In this paper, I have proposed testing a hypothesis concerning
the entire cointegrating vector by using the F statistic associated with the just identified
instrumental variables estimator, using deterministic polynomial trends or artificially gener-
ated random walks as instruments. I have shown that this method is robust to the regressors
having roots that are not necessarily exactly equal to one, which are modeled as being local
to unity. I have also compared the proposed method of inference with other alternatives
which are robust to the regressors not having exact unit roots and found that none of the
methods is dominant, but that the proposed method has good coverage and width properties.
The approach proposed in this paper is however the simplest of these methods; this and the
procedure in Wright (1999) are indeed the only computationally feasible robust approaches

to inference in this model when there are many regressors in the cointegrating system.
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APPENDIX: PROOF OF THE THEOREMS

I give the proofs of the Theorems for instruments I1 only, without loss of generality.

Proof of Theorem 1: If 5 = £,
Frv(8o) = (B = Bo) V(B — By) = 61 S uii” (B2t 2 ) 'S 2t
Because 3 — = O,(T 1), 52 —, 03 and so,
Frv(Bo) = (Jo ¢*(r)dVa(r))' (Jo ¢"(r)C*(r)) ™" fo ¢*(r)dVa(r),

with instruments I1. Since f; ¢*(r)dVi(r)"N(0, fy ¢“(r)C*(r)"), it follows that Fyy(8,) is

asymptotically x? on p degrees of freedom, completing the proof of Theorem 1.

T ZLU
Proof of Theorem 2: § — 3, = Eg 4+ 2 so
Zt Ty

)dVi(r)

09 (13 _ T_lff_lzz Z#’ult bO’ f ¢H(r bo
T2 (B~ o) = Toabmair et + 45 = S
Because 3 — = O,(T 1), 5 —, 03 and so,
2(32\21/ _ A2(09\2 T—2ET #2 f CH(r)2dr
T (01) V= 01(01) (T_2ZT Zt zi)? (f CH(r)JE (r)dr)?
But Fiv(8,) = (& ‘50)2, so combining these convergence results completes the proof of the

Theorem.
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